產(chǎn)品描述
XRF優(yōu)點、缺點
a) 分析速度高。測定用時與測定精密度有關,但一般都很短,2~5分鐘就可以測完樣品中的全部待測元素。
b) X射線熒光光譜跟樣品的化學結合狀態(tài)無關,而且跟固體、粉末、液體及晶質(zhì)、非晶質(zhì)等物質(zhì)的狀態(tài)也基本上沒有關系。(氣體密封在容器內(nèi)也可分析)但是在高分辨率的精密測定中卻可看到有波長變化等現(xiàn)象。特別是在超軟X射線范圍內(nèi),這種效應更為顯著。波長變化用于化學位的測定 。
c) 非破壞分析。在測定中不會引起化學狀態(tài)的改變,也不會出現(xiàn)試樣飛散現(xiàn)象。同一試樣可反復多次測量,結果重現(xiàn)性好。
d) X射線熒光分析是一種物理分析方法,所以對在化學性質(zhì)上屬同一族的元素也能進行分析。
e) 分析精密度高。
f) 制樣簡單,固體、粉末、液體樣品等都可以進行分析。
缺點
a)難于作絕對分析,故定量分析需要標樣。
b)對輕元素的靈敏度要低一些。
c)容易受相互元素干擾和疊加峰影響。
XRF:X射線熒光光譜分析(X Ray Fluorescence)人們通常把X射線照射在物質(zhì)上而產(chǎn)生的次級X射線叫X射線熒光(X—Ray Fluorescence),而把用來照射的X射線叫原級X射線。所以X射線熒光仍是X射線。一臺典型的X射線熒光(XRF)儀器由激發(fā)源(X射線管)和探測系統(tǒng)構成。X射線管產(chǎn)生入射X射線(一次X射線),激發(fā)被測樣品。受激發(fā)的樣品中的每一種元素會放射出二次X射線,并且不同的元素所放射出的二次X射線具有特定的能量特性或波長特性。探測系統(tǒng)測量這些放射出來的二次X射線的能量及數(shù)量。然后,儀器軟件將探測系統(tǒng)所收集到的信息轉換成樣品中各種元素的種類及含量。X射線照在物質(zhì)上而產(chǎn)生的次級 X射線被稱為X射線熒光。利用X射線熒光原理,理論上可以測量元素周期表中鈹以后的每一種元素。在實際應用中,有效的元素測量范圍為9號元素 (F)到92號元素(U)。
原理
X射線是電磁波譜中的某特定波長范圍內(nèi)的電磁波,其特性通常用能量(單位:千電子伏特,keV)和波長(單位:nm)描述。
X射線熒光是原子內(nèi)產(chǎn)生變化所致的現(xiàn)象。一個穩(wěn)定的原子結構由原子核及核外電子組成。其核外電子都以各自特有的能量在各自的固定軌道上運行,內(nèi)層電子(如K層)在足夠能量的X射線照射下脫離原子的束縛,釋放出的電子會導致該電子殼層出現(xiàn)相應的電子空位。這時處于高能量電子殼層的電子(如:L層)會躍遷到該低能量電子殼層來填補相應的電子空位。由于不同電子殼層之間存在著能量差距,這些能量上的差以二次X射線的形式釋放出來,不同的元素所釋放出來的二次X射線具有特定的能量特性。這一個過程就是我們所說的X射線熒光(XRF)。
波長
元素的原子受到高能輻射激發(fā)而引起內(nèi)層電子的躍遷,同時發(fā)射出具有一定特殊性波長的X射線,根據(jù)莫斯萊定律,熒光X射線的波長λ與元素的原子序數(shù)Z有關,其數(shù)學關系如下:λ=K(Z? s) ?2式中K和S是常數(shù)。
能量
而根據(jù)量子理論,X射線可以看成由一種量子或光子組成的粒子流,每個光子具有的能量為:
E=hν=h C/λ
式中,E為X射線光子的能量,單位為keV;h為普朗克常數(shù);ν為光波的頻率;C為光速。
因此,只要測出熒光X射線的波長或者能量,就可以知道元素的種類,這就是熒光X射線定性分析的基礎。此外,熒光X射線的強度與相應元素的含量有一定的關系,據(jù)此,可以進行元素定量分析。
分類
不同元素發(fā)出的特征X射線能量和波長各不相同,因此通過對X射線的能量或者波長的測量即可知道它是何種元素發(fā)出的,進行元素的定性分析。同時樣品受激發(fā)后發(fā)射某一元素的特征X射線強度跟這元素在樣品中的含量有關,因此測出它的強度就能進行元素的定量分析。
因此,X射線熒光光譜儀有兩種基本類型:
手機網(wǎng)站
地址:江蘇省 蘇州 昆山市 昆山市*園西路1888號
聯(lián)系人:孫先生(銷售經(jīng)理)
微信帳號:493963787@